Solve the simultaneous equations 3x y 10 and 2x... - SS2 Mathematics Simultaneous Linear and Quadratic Equations Question
Solve the simultaneous equations \(3x + y = 10\) and \({2x}^{2} + y^{2} = 19\).
\(3x + y = 10\) (1)
\({2x}^{2} + y^{2} = 19\) (2)
From (1), transpose \(y\),
\[3x + y = 10\]
\[y = 10 - 3x\]
In (2), substitute the value of \(y\),
\[{2x}^{2} + {(10 - 3x)}^{2} = 19\]
\[{2x}^{2} + {9x}^{2} - 60x + 100 = 19\]
\[{11x}^{2} - 60x + 100 - 19 = 0\]
\[{11x}^{2} - 60x + 81 = 0\]
\[\therefore x = 3\ or\ \frac{27}{11}\]
Substitute the values of \(x\) in (1)
\[3x + y = 10\]
For \(x = 3\)
\[9 + y = 10\]
\[y = 10 - 9 = 1\]
For \(x = \frac{27}{11} = 2.45\)
\[\frac{27}{11} + y = 10\]
\[y = 10 - \frac{27}{11}\]
\[y = 7.55\]
The solution to the simultaneous equations \(3x + y = 10\) and \({2x}^{2} + y^{2} = 19\) are the ordered pairs: \((3;1)or\ (2.45;7.55)\)
Add your answer
No responses